Machine learning-enabled traveltime inversion based on the horizontal source-location perturbation

Author:

Yildirim Isa Eren1ORCID,Alkhalifah Tariq2ORCID,Yildirim Ertugrul Umut3ORCID

Affiliation:

1. Middle East Technical University, Institute of Applied Mathematics, Üniversiteler Mahallesi, Dumlupinar Bulvari, Çankaya/Ankara 06800, Turkey. (corresponding author)

2. King Abdullah University of Science and Technology, Physical Sciences and Engineering Division, Thuwal 23955, Saudi Arabia.

3. Middle East Technical University, Institute of Applied Mathematics, Üniversiteler Mahallesi, Dumlupinar Bulvari, Çankaya/Ankara 06800, Turkey.

Abstract

Gradient-based traveltime tomography, which aims to minimize the difference between modeled and observed first-arrival times, is a highly nonlinear optimization problem. Stabilization of this inverse problem often requires using regularization. Although regularization helps avoid local minima solutions, it might cause low-resolution tomograms because of its inherent smoothing property. However, although conventional ray-based tomography can be robust in terms of the uniqueness of the solution, it suffers from the limitations inherent in ray tracing, which limits its use in complex media. To mitigate the aforementioned drawbacks of gradient and ray-based tomography, we have approached the problem in a novel way leveraging data-driven inversion techniques based on training deep convolutional neural networks (DCNN). Because DCNN often face challenges in detecting high-level features from the relatively smooth traveltime data, we use this type of network to map horizontal changes in observed first-arrival traveltimes caused by a source shift to lateral velocity variations. The relationship between them is explained by a linearized eikonal equation. Construction of the velocity models from this predicted lateral variation requires information from, for example, a vertical well log in the area. This vertical profile is then used to build a tomogram from the output of the network. The synthetic and field data results verify that the suggested approach reliably estimates the velocity models. Because of the limited depth penetration of first-arrival traveltimes, the method is particularly favorable for near-surface applications.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference16 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3