Probabilistic neural network-based 2D travel-time tomography

Author:

Earp StephanieORCID,Curtis Andrew

Abstract

AbstractTravel-time tomography for the velocity structure of a medium is a highly nonlinear and nonunique inverse problem. Monte Carlo methods are becoming increasingly common choices to provide probabilistic solutions to tomographic problems but those methods are computationally expensive. Neural networks can often be used to solve highly nonlinear problems at a much lower computational cost when multiple inversions are needed from similar data types. We present the first method to perform fully nonlinear, rapid and probabilistic Bayesian inversion of travel-time data for 2D velocity maps using a mixture density network. We compare multiple methods to estimate probability density functions that represent the tomographic solution, using different sets of prior information and different training methodologies. We demonstrate the importance of prior information in such high-dimensional inverse problems due to the curse of dimensionality: unrealistically informative prior probability distributions may result in better estimates of the mean velocity structure; however, the uncertainties represented in the posterior probability density functions then contain less information than is obtained when using a less informative prior. This is illustrated by the emergence of uncertainty loops in posterior standard deviation maps when inverting travel-time data using a less informative prior, which are not observed when using networks trained on prior information that includes (unrealistic) a priori smoothness constraints in the velocity models. We show that after an expensive program of network training, repeated high-dimensional, probabilistic tomography is possible on timescales of the order of a second on a standard desktop computer.

Funder

Schlumberger Cambridge Research

Equinor

Total

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3