Missing trace reconstruction for 2D land seismic data with randomized sparse sampling

Author:

Pawelec Iga1ORCID,Wakin Michael2,Sava Paul1

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado 80401-1887, USA.(corresponding author); .

2. Colorado School of Mines, Electrical Engineering Department, Golden, Colorado 80401-1887, USA..

Abstract

Acquisition of high-quality land seismic data requires (expensive) dense source and receiver geometries to avoid aliasing-related problems. Alternatively, acquisition using the concept of compressive sensing (CS) allows for similarly high-quality land seismic data using fewer measurements provided that the designed geometry and sparse recovery strategy are well matched. We have developed a complex wavelet-based sparsity-promoting wavefield reconstruction strategy to overcome challenges in land seismic data interpolation using the CS framework. Despite having lower angular sensitivity than curvelets, complex wavelets improve the reconstruction of sparsely acquired land data while being faster and requiring less storage. Unlike the Fourier transform, the complex wavelet transform localizes aliasing-related artifacts likely to be present in field data and yields reconstructions with fewer artifacts and higher signal-to-noise ratios. We determine that the data recovery success depends on the number and the geometry of the missing traces as revealed by analyzing reconstructions from multiple realizations of trace geometry and data decimation ratios. Using half the number of traces required by the regular sampling rules and thus reducing the acquisition costs, we find that data are appropriately reconstructed provided that there are no large gaps in the strategic places.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Undersampled Seismic Acquisition Geometries via End-to-End Optimization;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Seismic Data Reconstruction Based on Conditional Constraint Diffusion Model;IEEE Geoscience and Remote Sensing Letters;2024

3. Ergodic sampling: Acquisition design to maximize information from limited samples;Geophysical Prospecting;2023-11

4. 3D9C seismic data reconstruction with multi-scale convolution neural network;Journal of Applied Geophysics;2023-09

5. 3D Geometry Design via End-To-End Optimization for Land Seismic Acquisition;2022 IEEE International Conference on Image Processing (ICIP);2022-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3