Compressive sensing: A new approach to seismic data acquisition

Author:

Baraniuk Richard G.1,Steeghs Philippe2

Affiliation:

1. Rice University.

2. TNO.

Abstract

Sensing and imaging systems are under increasing pressure to accommodate ever-larger and higher-dimensional data sets; ever-faster capture, sampling, and processing rates; ever-lower power consumption; ever-smaller form factor; and new sensing modalities. These needs have motivated the development of new approaches to signal acquisition and processing. We provide an introduction to the field of compressive sensing (CS), which has stimulated a rethinking of sensor and signal processing system design. In CS, analog signals are digitized and processed not via uniform sampling but via measurements using more general, even random, test functions. In contrast to conventional wisdom, the new theory asserts that one can combine “sub-Nyquist rate sampling” with large-scale optimization for efficient and accurate signal acquisition when the signal has a sparse structure. Particular topics addressed include signal sparsity, randomized sampling, optimization-based signal recovery, and perspectives on applications to seismic data acquisition and processing.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3