Affiliation:
1. Ferdowsi University of Mashhad, Department of Geology, Faculty of Science, Mashhad, Iran..
Abstract
Dynamic-to-static modulus conversion has long been recognized as a complicated and challenging task in reservoir characterization and seismic geomechanics, and many single- and two-variable regression equations have been proposed. In practice however, the form and constants of the regression equation are variable from case to case. I introduce a methodology for estimating the static moduli called dynamic-to-static modeling (DTS). The methodology was validated by laboratory tests (ultrasonic and triaxial compression tests) to obtain dynamic and quasi-static bulk and Youngs (elasticity) moduli. Next, rock deformation phenomena were simulated considering different parameters affecting the process. The dynamic behavior was further modeled using rock physics methods. Unlike the conventional dynamic-to-static conversion procedures, the method considers a wide range of factors affecting the relationship between the dynamic and static moduli, including strain amplitude, dispersion, rock failure mechanism, pore shape, crack parameters, poromechanics, and upscaling. A comparison between the data from laboratory and in-situ tests and the estimation results indicated promising findings. The accuracy of the results was assessed by the analysis of variance (ANOVA). In addition to modeling the static moduli, DTS can be used to verify the static and dynamic moduli values with appropriate accuracy when core data is not available.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献