An iterative factored topography-dependent eikonal solver for anisotropic media

Author:

Zhou Xiaole1ORCID,Lan Haiqiang1ORCID,Chen Ling2,Guo Gaoshan1ORCID,Lei Yiming1ORCID,Bin Waheed Umair3ORCID,Pan Shulin4ORCID

Affiliation:

1. Chinese Academy of Sciences, State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Beijing 100029, China and University of Chinese Academy of Sciences, Beijing 100049, China.(corresponding author); .

2. Chinese Academy of Sciences, State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; and CAS, Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China..

3. King Fahd University of Petroleum and Minerals, College of Petroleum Engineering and Geosciences, Dhahran 31261, Saudi Arabia..

4. Southwest Petroleum University, School of Geosciences and Technology, Chengdu 610500, China..

Abstract

Accurate and efficient eikonal solvers for heterogeneous media play an important role in many areas of seismology, such as seismic tomography, migration, and earthquake localization. Incorporating seismic anisotropy and complex topography remain a computational challenge for finite-difference eikonal solvers. In recent years, the topography-dependent eikonal equation (TDEE) has been proposed as an effective way to calculate seismic traveltimes for isotropic and anisotropic media with irregular topography. However, the Lax-Friedrichs sweeping method used in previous studies to approximate the viscosity solution of TDEE for anisotropic media is more dissipative and needs a much higher number of iterations to converge. In addition, the TDEE solution for the initial point source has an upwind source singularity, which makes all TDEE solvers, even the high-order ones, exhibit polluted convergence and relatively large errors that propagate from the point source to the entire computational domain. To solve these problems, we have formulated the factored topography-dependent anisotropic eikonal (FTDAE) equation in tilted transversely isotropic (TTI) media using the factorization principle. Then, the resulting quartic equation can be numerically solved by using a fixed-point iteration technique based on the simpler elliptical anisotropic eikonal (EAE) equation with a high-order source term due to anelliptical anisotropy introduced by TTI media. At each iteration, the unknown traveltime in the EAE equation is factored into two functions: One of the functions is specified analytically to capture the source singularity, such that the unknown factor is differentiable in the source neighborhood and could be solved by the fast sweeping method. Numerical examples indicate that our FTDAE solver can treat source singularity successfully and achieve high accuracy after just a few iterations, independently of the mesh size, which could provide a more efficient and robust tool for traveltime calculation in the presence of seismic anisotropy and complex surfaces.

Funder

Strategic Priority Research Program

National Natural Science Foundation of China

Open Fund Project State Key Laboratory of Lithospheric Evolution

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3