A shortest‐path‐aided fast‐sweeping method to improve the accuracy of traveltime calculation in vertically transverse isotropic media

Author:

Zhang Jianming1ORCID,Dong Liangguo1ORCID,Huang Chao1ORCID

Affiliation:

1. State Key Laboratory of Marine Geology Tongji University Shanghai China

Abstract

AbstractThe high accuracy and efficiency of traveltime calculation are critical in seismic tomography, migration, static corrections, source locations and anisotropic parameter estimation. The fast‐sweeping method is an efficient upwind finite‐difference approach for solving the eikonal equation. However, the fast‐sweeping method is accurate only along the axis directions. In two‐dimensional or higher dimensional cases, the accuracy is severely decreased in the diagonal directions due to the numerical errors in these directions. These similar numerical errors also arose in higher order fast‐sweeping method and anisotropic fast‐sweeping method. To improve the accuracy of traveltime calculation in two‐dimensional or higher dimensional space, a shortest‐path‐aided fast‐sweeping method is proposed. The shortest‐path‐aided solution is embedded into the sweeping process of the standard fast‐sweeping method to improve the traveltime accuracy in the diagonal directions. Shortest‐path‐aided fast‐sweeping method is very easy to implement nearly without additional computational cost and memory consumption. Furthermore, this method is easy to extend from two‐dimensional to higher dimensional, from low‐order to higher‐order and from isotropic to anisotropic cases.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3