Beamform processing for sonic imaging using monopole and dipole sources

Author:

Hirabayashi Nobuyasu1ORCID

Affiliation:

1. Schlumberger, 110 Schlumberger Drive, Sugar Land, Texas 77478, USA.(corresponding author).

Abstract

New processing techniques are presented that enhance event signals for sonic imaging using monopole and dipole sources. The techniques use the azimuthally spaced receivers of a sonic logging tool. Sonic imaging, which is also known as borehole acoustic reflection surveys, uses a sonic logging tool in a fluid-filled borehole to image geologic structures. Signals from monopole and dipole sources are reflected from geologic interfaces and recorded by arrays of receivers of the same tool. Because the amplitudes of the event signals are very weak compared with the direct waves, borehole modes, and noise, the event signals are often difficult to extract. To enhance the weak event signals, beamforming techniques were developed to stack the waveforms from azimuthally spaced receivers of the tool for given azimuthal directions. For the incident P-waves from the monopole source, phase arrival times for the azimuthal receivers are time shifted for stacking using properties of wave propagation in the borehole. For the incident SH-waves from the dipole source, the signs of waveforms for the receivers are changed for specified azimuths. When the waveforms are stacked for the back azimuth of the event signals, the signal-to-noise ratio of the event signals is significantly improved because the event signals are enhanced whereas the direct waves are relatively smeared, and random noise is canceled. Therefore, the stacked waveforms also provide accurate back azimuths of the incident waves.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3