Borehole radiation and reception responses for azimuthal shear-wave reflection imaging with an off-centred dipole acoustic tool

Author:

Li Yanghu1ORCID,Tang Xiaoming123,Su Yuanda123

Affiliation:

1. School of Geosciences, China University of Petroleum (East China) , Qingdao 266580 , China

2. Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China) , Qingdao 266580 , China

3. Qingdao National Laboratory for Marine Science and Technology , Qingdao 266580 , China

Abstract

Abstract Radiation and reception responses of a dipole acoustic logging tool placed eccentrically in borehole fluid are an interesting and important topic in acoustic reflection imaging. Herein, we present a thorough research study on these responses. We treat the wave incidence from the reflector as the radiation from a virtual source and use the cylindrical-wave expansion method to solve both the wave radiation and reception problems for the off-centred tool, which, by using the steepest-descent method, yields asymptotic solutions for modelling the radiation and reception wavefield characteristics. The modelling results from the analytical solution and the 3D finite-difference method were in good agreement. Specifically, we analysed the radiation directivity of an eccentric dipole source in a fluid-filled borehole. The results revealed that the radiation pattern was asymmetric with respect to the borehole, and the asymmetry was determined by the eccentric distance, source frequency and formation properties. In particular, for the typical 3 kHz dipole logging frequency, the radiation was stronger in the off-centred direction than in the opposite direction. The asymmetry of the eccentric radiation resulted in a significant amplitude difference relative to its centred counterpart, which provided a potential method for addressing the 180° azimuth ambiguity of the dipole source. We used a theoretical waveform modelling example to demonstrate this advantage. Therefore, the results of this study provide a theoretical foundation for the development and application of dipole shear-wave imaging technology.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

China National Petroleum Corporation

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3