Experimental study on the receiving piezoelectric vibrator of azimuthal acoustic logging

Author:

Lu Junqiang12,Men Baiyong12,Che Xiaohua12

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing) , Beijing 102249 , China

2. Key Laboratory of Earth Prospecting and Information Technology , Beijing 102249 , China

Abstract

Abstract The performance of the azimuthal receiving piezoelectric vibrator has a major impact on the azimuthal acoustic logging tool. The evaluation of the performance and selective preference of piezoelectric vibrators through experimental methods will help improve the measurement accuracy of the tool. A heating tester was developed to test the static capacitance, resonant frequency, admittance and receiving amplitude of the vibrator at different temperatures. Far-field underwater acoustic tests were used to analyse the peak-to-peak amplitude, sensitivity and −3 dB angle of the vibrator and to determine the amplitude correction coefficients of each vibrator. The horizontal directivity of the azimuthally receiving phased subarray was also tested. Compared with the values at room temperature, the resonant frequency of the piezoelectric vibrator decreases by 9.20%, the static capacitance increases by 21.33% and the amplitude increases by 5.29% at a high temperature of 155°C. The underwater acoustic test showed that the main lobe of the receiving directional characteristic of the vibrator is symmetrical along the 0° main maximum direction, the −3 dB angle of the main lobe is 115°–142° and the average sensitivity level is −209.38 dB. The −3 dB angle of the receiving subarray is 66° and 60° without and with phase delay, respectively, and the energy of the received waveform is significantly increased. The piezoelectric vibrator can function stably at high temperatures, and its performance can be recovered after heating. It has good azimuthal resolution and high sensitivity, but the amplitude response has some discretion which needs to be corrected.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Reference30 articles.

1. 3D slowness time coherence for sonic imaging;Bennett;Geophysics,2018

2. Borehole acoustic imaging using 3D STC and ray tracing to determine far-field reflector dip and azimuth;Bennett;Petrophysics,2019

3. Characteristics of acoustic field generated by acoustic phased arc array transmitter in the borehole formation;Che;Acta Petrolei Sinica,2010

4. Analysis on waveform trains in physical simulation on acoustic logging with linear phased array transmitter;Chen;Journal of China University of Petroleum,2006

5. Acoustic imaging of reservoir structures from a horizontal well;Esmersoy;The Leading Edge,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3