Deep learning a poroelastic rock-physics model for pressure and saturation discrimination

Author:

Weinzierl Wolfgang1ORCID,Wiese Bernd1

Affiliation:

1. Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Brandenburg, Germany.(corresponding author); .

Abstract

Determining saturation and pore pressure is relevant for hydrocarbon production as well as natural gas and [Formula: see text] storage. In this context, seismic methods provide spatially distributed data used to determine gas and fluid migration. A method is developed that allows the determination of saturation and reservoir pressure from seismic data, more accurately from the rock-physics attributes of velocity, attenuation, and density. Two rock-physics models based on Hertz-Mindlin-Gassmann and Biot-Gassmann are developed. Both generate poroelastic attributes from pore pressure, gas saturation, and other rock-physics parameters. The rock-physics models are inverted with deep neural networks to derive saturation, pore pressure, and porosity from rock-physics attributes. The method is demonstrated with a 65 m deep unconsolidated high-porosity reservoir at the Svelvik ridge, Norway. Tests for the most suitable structure of the neural network are carried out. Saturation and pressure can be meaningfully determined under the condition of a gas-free baseline with known pressure and data from an accurate seismic campaign, preferably cross-well seismic. Including seismic attenuation increases the accuracy. Although training requires hours, predictions can be made in only a few seconds, allowing for rapid interpretation of seismic results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3