Interactively tracking seismic geobodies with a deep-learning flood-filling network

Author:

Shi Yunzhi1ORCID,Wu Xinming2ORCID,Fomel Sergey1ORCID

Affiliation:

1. The University of Texas at Austin, Bureau of Economic Geology, Austin, Texas 78713-8924, USA..

2. University of Science and Technology of China, School of Earth and Space Sciences, Hefei 230026, China.(corresponding author).

Abstract

We have designed a deep-learning workflow to interactively track seismic geobodies. The algorithm is based on a flood-filling network, which performs iterative segmentation and moving the field of view (FoV). The proposed network takes the previous mask output, together with the seismic image in a new FoV, as a combined input to predict the mask at this FoV. The movement of the FoV is guided by the flood-filling algorithm to visit and segment the full extent of a geobody. Unlike conventional seismic image segmentation methods, the proposed workflow can not only detect geobodies, but it can also track individual geobody instances.

Funder

Texas Consortium for Computational Seismology

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3