Physics-driven deep-learning inversion with application to transient electromagnetics

Author:

Colombo Daniele1ORCID,Turkoglu Ersan1,Li Weichang2ORCID,Sandoval-Curiel Ernesto1,Rovetta Diego3ORCID

Affiliation:

1. Saudi Aramco, EXPEC Advanced Research Center, Geophysics Technology, Dhahran 31311, Saudi Arabia.(corresponding author); .

2. Aramco Research Center — Houston, Aramco Americas, Houston, Texas 77084, USA..

3. Aramco Research Center — Delft, Aramco Overseas Company, Delft, South Holland 2628 ZD, The Netherlands..

Abstract

Machine learning, and specifically deep-learning (DL) techniques applied to geophysical inverse problems, is an attractive subject, which has promising potential and, at the same time, presents some challenges in practical implementation. Some obstacles relate to scarce knowledge of the searched geologic structures, a problem that can limit the interpretability and generalizability of the trained DL networks when applied to independent scenarios in real applications. Commonly used (physics-driven) least-squares optimization methods are very efficient local optimization techniques but require good starting models close to the correct solution to avoid local minima. We have developed a hybrid workflow that combines both approaches in a coupled physics-driven/DL inversion scheme. We exploit the benefits and characteristics of both inversion techniques to converge to solutions that typically outperform individual inversion results and bring the solution closer to the global minimum of a nonconvex inverse problem. The completely data-driven and self-feeding procedure relies on a coupling mechanism between the two inversion schemes taking the form of penalty functions applied to the model term. Predictions from the DL network are used to constrain the least-squares inversion, whereas the feedback loop from inversion to the DL scheme consists of the network retraining with partial results obtained from inversion. The self-feeding process tends to converge to a common agreeable solution, which is the result of two independent schemes with different mathematical formalisms and different objective functions on the data and model misfit. We determine that the hybrid procedure is converging to robust and high-resolution resistivity models when applied to the inversion of the synthetic and field transient electromagnetic data. Finally, we speculate that the procedure may be adopted to recast the way we solve inverse problems in several different disciplines.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3