Deep learning-based shot-domain seismic deblending

Author:

Sun Jing1ORCID,Hou Song2,Vinje Vetle3ORCID,Poole Gordon2ORCID,Gelius Leiv-J4

Affiliation:

1. University of Oslo, Department of Geosciences, Oslo, Norway and CGG Services (Norway) AS, Oslo, Norway. (corresponding author.

2. CGG Services (UK) Ltd, Crompton Way, Crawley, West Sussex, UK.

3. CGG Services (Norway) AS, Oslo, Norway.

4. University of Oslo, Department of Geosciences, Oslo, Norway.

Abstract

To streamline the fast-track processing of large data volumes, we have developed a deep learning approach to deblend seismic data in the shot domain based on a practical strategy for generating high-quality training data along with a list of data conditioning techniques to improve the performance of the data-driven model. We make use of unblended shot gathers acquired at the end of each sail line, to which the access requires no additional time or labor costs beyond the blended acquisition. By manually blending these data, we obtain training data that are fully adapted to the given survey, while having good control of their ground truth. Furthermore, we train a deep neural network using multichannel inputs that include adjacent blended shot gathers as additional channels. The prediction of the blending noise is added in as a related and auxiliary task with the main task of the network being the prediction of the primary-source events. Blending noise in the ground truth is scaled down during the training and validation process due to its excessively strong amplitudes. As part of the process, the to-be-deblended shot gathers are aligned by the blending noise. Implementation of field blended-by-acquisition data demonstrates that introducing the suggested data conditioning steps can considerably reduce the leakage of primary-source events in the deep part of the blended section. The complete proposed approach performs almost as well as a conventional algorithm in the shallow section and finds a great advantage in efficiency. It performs slightly worse for larger traveltimes, but it still removes the blending noise efficiently.

Funder

Norwegian Research Council

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3