A generalized O’Doherty‐Anstey formula for waves in finely layered media

Author:

Shapiro Serge A.1,Zien Holger2,Hubral Peter1

Affiliation:

1. Geophysical Institute, Karlsruhe University, Hertzstr. 16, Geb. 42, 76187 Karlsruhe, Germany

2. Sattlegger GmbH, Marienstr. 3, 49716 Meppen, Germany

Abstract

We investigate the angle‐dependent plane wave transmissivity of a pressure wave in a random, multilayered, acoustic, variable velocity and variable density medium. The main result of our consideration is a simple, explicit analytic description of the influence of such a medium on the transmissivity kinematics and dynamics for the whole frequency range. We assume that the velocity and density dependencies on depth are typical realizations of random stationary processes. Moreover, the fluctuations in both values must be relatively small compared to their constant mean values (of the order of 30 percent or smaller). In our derivation, we combine the small perturbation technique with the localization and self‐averaging theory. We obtain the attenuation and the phase of the time‐harmonic transmissivity, as well as the pulse form of the transient transmissivity from an angle‐dependent combination of the auto‐ and crosscorrelation functions of both the sonic and density logs. Our results for the kinematics of the transmissivity yield the wellknown “Backus averaging” in the low‐frequency limit. Likewise, they provide the ray theory result as the high‐frequency asymptotic value. The analytic expression for the transmissivity can be viewed as a generalization of the O’Doherty‐Anstey formula. Numerical computations of the actual transmissivity show fluctuations around the theoretical prediction given by our formula, which is strictly valid only in the case of infinitely thick media. The larger the layered medium, the smaller are these fluctuations. They can be well estimated with a formula which we derive to describe the deviations between the analytic and the exact transmissivity obtained for a layered medium of finite thickness.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3