Affiliation:
1. University of Houston, Rock Physics Laboratory, Houston, Texas, USA.(corresponding author); .
2. China University of Petroleum, School of Geosciences, Qingdao, China..
Abstract
The layer-induced seismic anisotropy of sedimentary strata is frequency-dependent. At the low-frequency limit, the effective anisotropic properties of the layered media can be estimated by the Backus averaging model. At the high-frequency limit, the apparent anisotropic properties of the layered media can be estimated by ray theory. First, we build a database of laboratory ultrasonic measurement on sedimentary rocks from the literature. The database includes ultrasonic velocity measurements on sandstones and carbonate rocks, and velocity-anisotropy measurements on shales. Then, we simulate the sedimentary strata by randomly selecting a certain number of rock samples and using their laboratory measurement results to parameterize each layer. For each realization of the sedimentary strata, we estimate the effective and apparent seismic anisotropy parameters using the Backus average and ray theory, respectively. We find that, relative to Backus averaging, ray theory usually underestimates the Thomsen parameters [Formula: see text] and [Formula: see text], and overestimates [Formula: see text]. For an effective layered medium consisting of isotropic sedimentary rocks, the differences are significant. These differences decrease when shales with intrinsic seismic anisotropy are included. For the same sedimentary strata, the seismic wave should perceive stronger seismic anisotropy than the ultrasonic wave.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献