Small acoustic sources for low-cost reservoir monitoring offshore

Author:

Chalenski David A.1,Wang Kanglin2,Lopez Jorge1,Hatchell Paul1,Wills Peter1,Chen Yi2,Griswold Shari2,Patrikeeva Natalya3

Affiliation:

1. Shell International Exploration and Production Inc.

2. Shell Exploration & Production Company.

3. Formerly of Shell Exploration & Production Company.

Abstract

Two 4D seismic data sets are compared which were acquired simultaneously in a deepwater field but with differently sized acoustic sources with 2450 in3 and 360 in3 volumes. The data sets were processed using similar runstreams, enabling side-by-side comparison of the 4D features. Compared with the large-source data, the small-source data showed similar 4D signals, albeit with higher but acceptable levels of 4D noise. An overprint of the acquisition methodology was found to detrimentally impact the small-source data, but this was mitigated in processing. Opportunities for improvement of the small-source data in future dedicated surveys are proposed. A cost–benefit analysis is presented to show the relative value increase by using smaller, lower-cost surveys for frequent reservoir monitoring.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3