Integrated simulation to seismic and seismic reservoir characterization in a CO2 EOR monitoring application

Author:

Mur Alan1,Barajas-Olalde César2,Adams Donald C.2,Jin Lu2,He Jun2,Hamling John A.2,Gorecki Charles D.2

Affiliation:

1. Ikon Science Americas, Houston, Texas, USA..

2. Energy and Environmental Research Center, Grand Forks, North Dakota, USA..

Abstract

Understanding the behavior of CO2 injected into a reservoir and delineating its spatial distribution are fundamentally important in enhanced oil recovery (EOR) and CO2 capture and sequestration activities. Interdisciplinary geoscience collaboration and well-defined workflows, from data acquisition to reservoir simulation, are needed to effectively handle the challenges of EOR fields and envisioned future commercial-scale sites for planned and incidental geologic CO2 storage. Success of operations depends on decisions that are based on good understanding of geologic formation heterogeneities and fluid and pressure movements in the reservoir over large areas over time. We present a series of workflow steps that optimize the use of available data to improve and integrate the interpretation of facies, injection, and production effects in an EOR application. First, we construct a simulation-to-seismic model supported by rock physics to model the seismic signal and signal quality needed for 4D monitoring of fluid and pressure changes. Then we use Bayesian techniques to invert the baseline and monitor seismic data sets for facies and impedances. To achieve a balance between prior understanding of the reservoir and the recorded time-lapse seismic data, we invert the seismic data sets by using multiple approaches. We first invert the seismic data sets independently, exploring sensible parameter scenarios. With the resulting realizations, we develop a shared prior model to link the reservoir facies geometry between seismic vintages upon inversion. Then we utilize multirealization analysis methods to quantify the uncertainties of our predictions. Next, we show how data may be more deeply interrogated by using the facies inversion method to invert prestack seismic differences directly for production effects. Finally, we show and discuss the feedback loop for updating the static and dynamic reservoir simulation model to highlight the integration of geophysical and engineering data within a single model.

Funder

U.S. Department of Energy, National Energy Technology Laboratory

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3