High-productivity seabed time-lapse seismic data acquisition using simultaneous sources enabled by seismic apparition: A synthetic-data study

Author:

Eggenberger Kurt1,Pedersen Åsmund Sjøen2,Thompson Mark2,Solheim Odd Arve2,Amundsen Lasse2,van Manen Dirk-Jan1,Andersson Fredrik1,Robertsson Johan O. A.1

Affiliation:

1. Seismic Apparition GmbH, CH-8006 Zurich, Switzerland.

2. Statoil Research Centre, N-7053 Ranheim, Norway.

Abstract

Seismic apparition is a recent signal-processing advance that trades signal interference and aliasing between different spatial (and temporal) dimensions. In particular, an important application of seismic apparition is for simultaneous-source separation to better exploit the available data space in the frequency-wavenumber (f-k) domain with energy from different simultaneous sources. The introduction of periodic modulation functions in seismic acquisition produces an effect where parts of the energy of one or more sources are partially shifted to different empty parts within the f-k domain. This so-called apparated energy then can be used to perfectly predict (at low frequencies) the remaining part of the signal in the regions of the f-k domain where the wavefields from the different sources overlap and to deterministically separate the sources at predetermined (repeated) positions — a prerequisite for 4D seismic processing. At higher frequencies, the apparition separation is dealiased using directional information, taking full advantage of the perfect separation at lower frequencies to achieve the required low-error separation. To apparate seismic energy to different portions within the f-k domain, we introduce a periodic modulation function, consisting for instance of a small time delay/advance or an amplitude scaling to every second shot. Our simultaneous-source approach is thus opposite to established industry practices of maximizing randomness using dithered sources. A deterministic simultaneous-source-separation approach in which shot points and simultaneous-source patterns are repeated accurately is a major advantage over industry-standard stochastic simultaneous-source-acquisition approaches, particularly for 4D applications. We demonstrate the suitability of the seismic-apparition simultaneous-source technique to time-lapse seismic, having a permanent-reservoir-monitoring context in mind, by investigating two operational scenarios of single-vessel acquisition where two sources are excited simultaneously. Single-vessel simultaneous-source acquisition represents the most challenging case for shot separation in general and for time-lapse seismic applications in particular. The quantitative and qualitative wavefield decomposition results analyzed pre- and poststack are highly encouraging on synthetic data and warrant further testing of seismic-apparition technology in a real 4D seismic test case.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wavefield Decomposition of Ocean-Bottom Multicomponent Seismic Data with Composite Calibration Filters;Remote Sensing;2022-06-29

2. References;Survey Design and Seismic Acquisition for Land, Marine, and In-between in Light of New Technology and Techniques;2020-02-11

3. Multisource encoding and decoding using the signal apparition technique;GEOPHYSICS;2018-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3