Abstract
Downgoing/upgoing P/S-wave decomposition of ocean-bottom seismic (OBS) multicomponent data can help suppress the water-layer multiples and cross-talks between P- and S-waves, and therefore plays an important role in seismic migration and construction of P- and S-wave velocity models. We proposed novel composite calibration filters by introducing an additional dimension to the calibration of the particle velocity components, extending the wave-equation-based adaptive decomposition method. We also modified the existing workflow by jointly using primary reflections at near-to-medium offsets and ocean-bottom refractions at far offsets in the calibration optimization. The decomposition scheme with the novel calibration filters yielded satisfactory results in a deep-water OBS field data decomposition example. Expected decomposition effects, such as the enhancement of primary reflections and the attenuation of water-layer multiple events, can be observed in the decomposed upgoing wavefields. An experiment illustrated the effectiveness of composite calibration filters that compensated for unexpected velocity errors along the offset dimension.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献