Generalized eigenfunctions and complete semiseparable solutions for Stokes flow in spheroidal coordinates

Author:

Dassios G.,Hadjinicolaou M.,Payatakes A. C.

Abstract

The stream function ψ \psi for axisymmetric Stokes flow satisfies the well-known equation E 4 ψ = 0 {E^4}\psi = 0 . In spheroidal coordinates the equation E 2 ψ = 0 {E^2}\psi = 0 admits separable solutions in the form of products of Gegenbauer functions of the first and second kind, and the general solution is then represented as a series expansion in terms of these eigenfunctions. Unfortunately, this property of separability is not preserved when one seeks solutions of the equation E 4 ψ = 0 {E^4}\psi = 0 . The nonseparability of E 4 ψ = 0 {E^4}\psi = 0 in spheroidal coordinates has impeded considerably the development of theoretical models involving particle-fluid interactions around spheroidal objects. In the present work the complete solution for ψ \psi in spheroidal coordinates is obtained as follows. First, the generalized 0-eigenspace of the operator E 2 {E^2} is investigated and a complete set of generalized eigenfunctions is given in closed form, in terms of products of Gegenbauer functions with mixed order. The general Stokes stream function is then represented as the sum of two functions: one from the 0-eigenspace and one from the generalized 0-eigenspace of the operator E 2 {E^2} . A rearrangement of the complete expansion, in such a way that the angular-type dependence enters through the Gegenbauer functions of successive order, leads to some kind of semiseparable solutions, which are given in terms of full series expansions. The proper solution subspace that provides velocity and vorticity fields, which are regular on the axis, is given explicitly. Finally, it is shown how these simple and generalized eigenfunctions reduce to the corresponding spherical eigenfunctions as the focal distance of the spheroidal system tends to zero, in which case the separability is regained. The usefulness of the method is demonstrated by solving the problem of the flow in a fluid cell contained between two confocal spheroidal surfaces with Kuwabara-type boundary conditions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3