Translational motion of a spheroidal drop in a viscous fluid

Author:

Prakash JaiORCID,Keh Huan J.ORCID

Abstract

The problem of translational motion of a spheroidal drop along its axis of revolution in a viscous incompressible fluid is investigated semi-analytically. The flow fields in the exterior and interior of the drop are governed by the Stokes equations. Stream function formulation is adopted to solve the hydrodynamic equations in both regions. The general solution for the stream function in prolate and oblate spheroidal coordinates is expressed in an infinite-series form of semi-separation of variables. The leading order coefficients in the stream function are obtained using suitable boundary conditions. The hydrodynamic drag force experienced by the spheroidal drop is numerically evaluated with adequate convergence behavior for various values of the internal-to-external viscosity ratio and axial-to-radial aspect ratio of the drop. The numerical values of the drag force for the infinite and infinitesimal viscosity ratios agree with the available corresponding results for the slow translation of a slip spheroidal particle in the limiting conditions of no slip and full slip, respectively. At intermediate values of the viscosity ratio, the hydrodynamic force may not be a monotonic function of the aspect ratio. For a spheroidal drop with a fixed aspect ratio, its drag force increases monotonically with an increase in the viscosity ratio.

Publisher

AIP Publishing

Reference32 articles.

1. Microdroplets: A sea of applications?;Lab Chip,2008

2. Inertial microfluidic physics;Lab Chip,2014

3. On stationary liquid movements with consideration of internal friction;J. Reine. Angew. Math.,1876

4. The Stokes flow problem for a class of axially symmetric bodies;J. Fluid Mech.,1960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3