Drinfeld-type presentations of loop algebras

Author:

Chen Fulin,Jing Naihuan,Kong Fei,Tan Shaobin

Abstract

Let g \mathfrak {g} be the derived subalgebra of a Kac-Moody Lie algebra of finite-type or affine-type, let μ \mu be a diagram automorphism of g \mathfrak {g} , and let L ( g , μ ) \mathcal {L}(\mathfrak {g},\mu ) be the loop algebra of g \mathfrak {g} associated to μ \mu . In this paper, by using the vertex algebra technique, we provide a general construction of current-type presentations for the universal central extension g ^ [ μ ] \widehat {\mathfrak {g}}[\mu ] of L ( g , μ ) \mathcal {L}(\mathfrak {g},\mu ) . The construction contains the classical limit of Drinfeld’s new realization for (twisted and untwisted) quantum affine algebras [Soviet Math. Dokl. 36 (1988), pp. 212–216] and the Moody-Rao-Yokonuma presentation for toroidal Lie algebras [Geom. Dedicata 35 (1990), pp. 283–307] as special examples. As an application, when g \mathfrak {g} is of simply-laced-type, we prove that the classical limit of the μ \mu -twisted quantum affinization of the quantum Kac-Moody algebra associated to g \mathfrak {g} introduced in [J. Math. Phys. 59 (2018), 081701] is the universal enveloping algebra of g ^ [ μ ] \widehat {\mathfrak {g}}[\mu ] .

Funder

National Natural Science Foundation of China

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. Extended affine Lie algebras and their root systems;Allison, Bruce N.;Mem. Amer. Math. Soc.,1997

2. A characterization of affine Kac-Moody Lie algebras;Allison, Bruce N.;Comm. Math. Phys.,1997

3. Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2;Allison, Bruce;J. Eur. Math. Soc. (JEMS),2014

4. Braid group action and quantum affine algebras;Beck, Jonathan;Comm. Math. Phys.,1994

5. Quantum tori and the structure of elliptic quasi-simple Lie algebras;Berman, Stephen;J. Funct. Anal.,1996

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3