Twisted quantum affinizations and quantization of extended affine lie algebras

Author:

Chen Fulin,Jing Naihuan,Kong Fei,Tan Shaobin

Abstract

In this paper, for an arbitrary Kac-Moody Lie algebra g {\mathfrak g} and a diagram automorphism μ \mu of g {\mathfrak g} satisfying certain natural linking conditions, we introduce and study a μ \mu -twisted quantum affinization algebra U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) of g {\mathfrak g} . When g {\mathfrak g} is of finite type, U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) is Drinfeld’s current algebra realization of the twisted quantum affine algebra. When μ = i d \mu =\mathrm {id} and g {\mathfrak g} in affine type, U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) is the quantum toroidal algebra introduced by Ginzburg, Kapranov and Vasserot. As the main results of this paper, we first prove a triangular decomposition for U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) . Second, we give a simple characterization of the affine quantum Serre relations on restricted U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) -modules in terms of “normal order products”. Third, we prove that the category of restricted U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) -modules is a monoidal category and hence obtain a topological Hopf algebra structure on the “restricted completion” of U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) . Last, we study the classical limit of U ( g ^ μ ) {\mathcal U}_\hbar \left (\hat {\mathfrak g}_\mu \right ) and abridge it to the quantization theory of extended affine Lie algebras. In particular, based on a classification result of Allison-Berman-Pianzola, we obtain the \hbar -deformation of all nullity 2 2 extended affine Lie algebras.

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference68 articles.

1. Extended affine Lie algebras and their root systems;Allison, Bruce N.;Mem. Amer. Math. Soc.,1997

2. A characterization of affine Kac-Moody Lie algebras;Allison, Bruce N.;Comm. Math. Phys.,1997

3. Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2;Allison, Bruce;J. Eur. Math. Soc. (JEMS),2014

4. The root system and the core of an extended affine Lie algebra;Allison, Bruce N.;Selecta Math. (N.S.),2001

5. Braid group action and quantum affine algebras;Beck, Jonathan;Comm. Math. Phys.,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3