Universal halting times in optimization and machine learning

Author:

Sagun Levent,Trogdon Thomas,LeCun Yann

Abstract

We present empirical evidence that the halting times for a class of optimization algorithms are universal. The algorithms we consider come from quadratic optimization, spin glasses and machine learning. A universality theorem is given in the case of the quadratic gradient descent flow. More precisely, given an algorithm, which we take to be both the optimization routine and the form of the random landscape, the fluctuations of the halting time of the algorithm follow a distribution that, after centering and scaling, appears invariant under changes in the distribution on the landscape — universality is present.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference17 articles.

1. Springer Monographs in Mathematics;Adler, Robert J.,2007

2. Random matrices and complexity of spin glasses;Auffinger, Antonio;Comm. Pure Appl. Math.,2013

3. A neural computation model for decision-making times;Bakhtin, Yuri;J. Math. Psych.,2012

4. On the principal components of sample covariance matrices;Bloemendal, Alex;Probab. Theory Related Fields,2016

5. Large-scale machine learning with stochastic gradient descent;Bottou, Léon,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3