On self-affine tiles whose boundary is a sphere

Author:

Thuswaldner Jörg,Zhang Shu-qin

Abstract

Let M M be a 3 × 3 3\times 3 integer matrix each of whose eigenvalues is greater than 1 1 in modulus and let D Z 3 \mathcal {D}\subset \mathbb {Z}^3 be a set with | D | = | det M | |\mathcal {D}|=|\det M| , called a digit set. The set equation M T = T + D MT = T+\mathcal {D} uniquely defines a nonempty compact set T R 3 T\subset \mathbb {R}^3 . If T T has positive Lebesgue measure it is called a 3 3 -dimensional self-affine tile. In the present paper we study topological properties of 3 3 -dimensional self-affine tiles with collinear digit set, i.e., with a digit set of the form D = { 0 , v , 2 v , , ( | det M | 1 ) v } \mathcal {D}=\{0,v,2v,\ldots , (|\det M|-1)v\} for some v Z 3 { 0 } v\in \mathbb {Z}^3\setminus \{0\} . We prove that the boundary of such a tile T T is homeomorphic to a 2 2 -sphere whenever its set of neighbors in a lattice tiling which is induced by T T in a natural way contains 14 14 elements. The combinatorics of this lattice tiling is then the same as the one of the bitruncated cubic honeycomb, a body-centered cubic lattice tiling by truncated octahedra. We give a characterization of 3 3 -dimensional self-affine tiles with collinear digit set having 14 14 neighbors in terms of the coefficients of the characteristic polynomial of M M . In our proofs we use results of R. H. Bing on the topological characterization of spheres.

Funder

Austrian Science Fund

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference41 articles.

1. On the connectedness of self-affine attractors;Akiyama, Shigeki;Arch. Math. (Basel),2004

2. Connectedness of number theoretic tilings;Akiyama, Shigeki;Discrete Math. Theor. Comput. Sci.,2005

3. Boundary parametrization of self-affine tiles;Akiyama, Shigeki;J. Math. Soc. Japan,2011

4. Self-similar sets. V. Integer matrices and fractal tilings of 𝑅ⁿ;Bandt, Christoph;Proc. Amer. Math. Soc.,1991

5. Combinatorial topology of three-dimnesional self-affine tiles;Bandt,Christoph;preprint,2010

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3