Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture

Author:

Fiebig Peter

Abstract

We relate a certain category of sheaves of k k -vector spaces on a complex affine Schubert variety to modules over the k k -Lie algebra (for char k > 0 \operatorname {char} k>0 ) or to modules over the small quantum group (for char k = 0 \operatorname {char} k=0 ) associated to the Langlands dual root datum. As an application we give a new proof of Lusztig’s conjecture on quantum characters and on modular characters for almost all characteristics. Moreover, we relate the geometric and representation-theoretic sides to sheaves on the underlying moment graph, which allows us to extend the known instances of Lusztig’s modular conjecture in two directions: We give an upper bound on the exceptional characteristics and verify its multiplicity-one case for all relevant primes.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference31 articles.

1. Quantum groups, the loop Grassmannian, and the Springer resolution;Arkhipov, Sergey;J. Amer. Math. Soc.,2004

2. Representations of quantum groups at a 𝑝th root of unity and of semisimple groups in characteristic 𝑝: independence of 𝑝;Andersen, H. H.;Ast\'{e}risque,1994

3. The irreducible characters for semi-simple algebraic groups and for quantum groups;Andersen, Henning Haahr,1995

4. Faisceaux pervers;Beĭlinson, A. A.,1982

5. Koszul duality patterns in representation theory;Beilinson, Alexander;J. Amer. Math. Soc.,1996

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On one-sided singular Soergel bimodules;Journal of Algebra;2023-11

2. Varieties of Borel subalgebras for the Jacobson–Witt Lie algebras;Forum Mathematicum;2023-07-26

3. A HECKE ACTION ON -MODULES;Journal of the Institute of Mathematics of Jussieu;2023-04-28

4. On the principal representations of reductive groups in defining characteristic;Journal of Algebra;2023-04

5. A bimodule description of the Hecke category;Compositio Mathematica;2021-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3