Quantum groups, the loop Grassmannian, and the Springer resolution

Author:

Arkhipov Sergey,Bezrukavnikov Roman,Ginzburg Victor

Abstract

We establish equivalences of the following three triangulated categories: \[ D quantum ( g ) D coherent G ( N ~ ) D perverse ( G r ) . D_\text {quantum}(\mathfrak {g})\enspace \longleftrightarrow \enspace D^G_\text {coherent}(\widetilde {{\mathcal N}})\enspace \longleftrightarrow \enspace D_\text {perverse}(\mathsf {Gr}). \] Here, D quantum ( g ) D_\text {quantum}(\mathfrak {g}) is the derived category of the principal block of finite-dimensional representations of the quantized enveloping algebra (at an odd root of unity) of a complex semisimple Lie algebra g \mathfrak {g} ; the category D coherent G ( N ~ ) D^G_\text {coherent}(\widetilde {{\mathcal N}}) is defined in terms of coherent sheaves on the cotangent bundle on the (finite-dimensional) flag manifold for G G ( = = semisimple group with Lie algebra g \mathfrak {g} ), and the category D perverse ( G r ) D_\text {perverse}({\mathsf {Gr}}) is the derived category of perverse sheaves on the Grassmannian G r {\mathsf {Gr}} associated with the loop group L G LG^\vee , where G G^\vee is the Langlands dual group, smooth along the Schubert stratification. The equivalence between D quantum ( g ) D_\text {quantum}(\mathfrak {g}) and D coherent G ( N ~ ) D^G_\text {coherent}(\widetilde {{\mathcal N}}) is an “enhancement” of the known expression (due to Ginzburg and Kumar) for quantum group cohomology in terms of nilpotent variety. The equivalence between D perverse ( G r ) D_\text {perverse}(\mathsf {Gr}) and D coherent G ( N ~ ) D^G_\text {coherent}(\widetilde {{\mathcal N}}) can be viewed as a “categorification” of the isomorphism between two completely different geometric realizations of the (fundamental polynomial representation of the) affine Hecke algebra that has played a key role in the proof of the Deligne-Langlands-Lusztig conjecture. One realization is in terms of locally constant functions on the flag manifold of a p p -adic reductive group, while the other is in terms of equivariant K K -theory of a complex (Steinberg) variety for the dual group. The composite of the two equivalences above yields an equivalence between abelian categories of quantum group representations and perverse sheaves. A similar equivalence at an even root of unity can be deduced, following the Lusztig program, from earlier deep results of Kazhdan-Lusztig and Kashiwara-Tanisaki. Our approach is independent of these results and is totally different (it does not rely on the representation theory of Kac-Moody algebras). It also gives way to proving Humphreys’ conjectures on tilting U q ( g ) U_q(\mathfrak {g}) -modules, as will be explained in a separate paper.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference53 articles.

1. [AB]AB S. Arkhipov, R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, arXiv:math.RT/0201073.

2. Representations of quantum algebras;Andersen, Henning Haahr;Invent. Math.,1991

3. Injective modules for quantum algebras;Andersen, Henning Haahr;Amer. J. Math.,1992

4. Fusion categories arising from semisimple Lie algebras;Andersen, Henning Haahr;Comm. Math. Phys.,1995

5. Cohomologie équivariante délocalisée;Baum, Paul;C. R. Acad. Sci. Paris S\'{e}r. I Math.,1985

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3