Counting faces of randomly projected polytopes when the projection radically lowers dimension

Author:

Donoho David,Tanner Jared

Abstract

Let Q = Q N Q = Q_N denote either the N N -dimensional cross-polytope C N C^N or the N 1 N-1 -dimensional simplex T N 1 T^{N-1} . Let A = A n , N A = A_{n,N} denote a random orthogonal projector A : R N b R n A: \mathbf {R}^{N} \mapsto bR^n . We compare the number of faces f k ( A Q ) f_k(AQ) of the projected polytope A Q AQ to the number of faces of f k ( Q ) f_k(Q) of the original polytope Q Q . We concentrate on the case where n n and N N are both large, but n n is much smaller than N N ; in this case the projection dramatically lowers dimension.

We consider sequences of triples ( k , n , N ) (k,n,N) where N = N n N = N_n is not exponentially larger than n n . We identify thresholds of the form c o n s t n log ( n / N ) const \cdot n \log (n/N) where the relationship of f k ( A Q ) f_k(AQ) and f k ( Q ) f_k(Q) changes abruptly.

These properties of polytopes have significant implications for neighborliness of convex hulls of Gaussian point clouds, for efficient sparse solution of underdetermined linear systems, for efficient decoding of random error correcting codes and for determining the allowable rate of undersampling in the theory of compressed sensing.

The thresholds are characterized precisely using tools from polytope theory, convex integral geometry, and large deviations. Asymptotics developed for these thresholds yield the following, for fixed ϵ > 0 \epsilon > 0 .

With probability tending to 1 as n n , N N tend to infinity:

(1a) for k > ( 1 ϵ ) n [ 2 e ln ( N / n ) ] 1 k > (1-\epsilon ) \cdot n [2e\ln (N/n)]^{-1} we have f k ( A Q ) = f k ( Q ) f_k(AQ) = f_k(Q) ,

(1b) for k > ( 1 + ϵ ) n [ 2 e ln ( N / n ) ] 1 k > (1 +\epsilon ) \cdot n [2e\ln (N/n)]^{-1} we have f k ( A Q ) > f k ( Q ) f_k(AQ) > f_k(Q) ,

with E {\mathcal E} denoting expectation,

(2a) for k > ( 1 ϵ ) n [ 2 ln ( N / n ) ] 1 k > (1-\epsilon ) \cdot n [2\ln (N/n)]^{-1} we have E f k ( A Q ) > ( 1 ϵ ) f k ( Q ) {\mathcal E} f_k(AQ) > (1-\epsilon ) f_k(Q) ,

(2b) for k > ( 1 + ϵ ) n [ 2 ln ( N / n ) ] 1 k > (1 +\epsilon ) \cdot n [2\ln (N/n)]^{-1} we have E f k ( A Q ) > ϵ f k ( Q ) {\mathcal E} f_k(AQ) > \epsilon f_k(Q) .

These asymptotically sharp transitions in the behavior of face numbers as k k varies relative to n log ( N / n ) n \log (N/n) are proven, interpreted, and related to the above-mentioned applications.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Random projections of regular simplices;Affentranger, Fernando;Discrete Comput. Geom.,1992

2. Random projections of regular polytopes;Böröczky, Károly, Jr.;Arch. Math. (Basel),1999

3. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information;Candès, Emmanuel J.;IEEE Trans. Inform. Theory,2006

4. Decoding by linear programming;Candes, Emmanuel J.;IEEE Trans. Inform. Theory,2005

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3