Author:
Böröczky Károly J.,Lugosi Gábor,Reitzner Matthias
Abstract
AbstractWe study the number of facets of the convex hull of n independent standard Gaussian points in $${\mathbb {R}}^d$$
R
d
. In particular, we are interested in the expected number of facets when the dimension is allowed to grow with the sample size. We establish an explicit asymptotic formula that is valid whenever $$d/n\rightarrow 0$$
d
/
n
→
0
. We also obtain the asymptotic value when d is close to n.
Funder
DFG-GRK
Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
Országos Tudományos Kutatási Alapprogramok
ELKH Alfréd Rényi Institute of Mathematics
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Affentranger, F.: The convex hull of random points with spherically symmetric distributions. Rend. Sem. Mat. Univ. Politec. Torino 49, 359–383 (1991)
2. Affentranger, F., Schneider, R.: Random projections of regular simplices. Discrete Comput. Geom. 7, 219–226 (1992)
3. Baryshnikov, Y.M., Vitale, R.A.: Regular simplices and Gaussian samples. Discrete Comput. Geom. 11, 141–147 (1994)
4. Bárány, I., Thäle, C.: Intrinsic volumes and Gaussian polytopes: the missing piece of the jigsaw. Doc. Math. 22, 1323–1335 (2017)
5. Bárány, I., Vu, V.H.: Central limit theorems for Gaussian polytopes. Ann. Probab. 35, 1593–1621 (2007)