Threshold functions for Ramsey properties

Author:

Rödl Vojtěch,Ruciński Andrzej

Abstract

Probabilistic methods have been used to approach many problems of Ramsey theory. In this paper we study Ramsey type questions from the point of view of random structures. Let K ( n , N ) K(n,N) be the random graph chosen uniformly from among all graphs with n n vertices and N N edges. For a fixed graph G G and an integer r r we address the question what is the minimum N = N ( G , r , n ) N = N(G,r,n) such that the random graph K ( n , N ) K(n,N) contains, almost surely, a monochromatic copy of G G in every r r -coloring of its edges ( K ( n , N ) ( G ) r K(n,N) \to {(G)_r} , in short). We find a graph parameter γ = γ ( G ) \gamma = \gamma (G) yielding \[ lim n Prob ( K ( n , N ) ( G ) r ) = { 0 if  N > c n y , 1 if N > C n y , \lim \limits _{n \to \infty } \operatorname {Prob}(K(n,N) \to {(G)_r}) = \left \{ {\begin {array}{*{20}{c}} {0\quad {\text {if }}\;N > c{n^y},} \\ {1\quad {\text {if}}\;N > C{n^y},} \\ \end {array} } \right .\quad \] for some c c , C > 0 C > 0 . We use this to derive a number of consequences that deal with the existence of sparse Ramsey graphs. For example we show that for all r 2 r \geq 2 and k 3 k \geq 3 there exists C > 0 C > 0 such that almost all graphs H H with n n vertices and C n 2 k k + 1 C{n^{\frac {{2k}}{{k + 1}}}} edges which are K k + 1 {K_{k + 1}} -free, satisfy H ( K k ) r H \to {({K_k})_r} . We also apply our method to the problem of finding the smallest N = N ( k , r , n ) N = N(k,r,n) guaranteeing that almost all sequences 1 a 1 > a 2 > > a N n 1 \leq {a_1} > {a_2} > \cdots > {a_N} \leq n contain an arithmetic progression of length k k in every r r -coloring, and show that N = Θ ( n k 2 k 1 ) N = \Theta ({n^{\frac {{k - 2}}{{k - 1}}}}) is the threshold.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. Threshold functions for small subgraphs;Bollobás, Béla;Math. Proc. Cambridge Philos. Soc.,1981

2. Threshold functions;Bollobás, B.;Combinatorica,1987

3. P.Erdős and A.Hajnal, Research problem 2-5, J. Combin. Theory 2 (1967), 104.

4. P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960), 17-61.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the use of senders for asymmetric tuples of cliques in Ramsey theory;Journal of Combinatorial Theory, Series B;2024-11

2. Directed graphs with lower orientation Ramsey thresholds;RAIRO - Operations Research;2024-07

3. Transversals in Latin Squares;Surveys in Combinatorics 2024;2024-06-13

4. Ramsey Equivalence for Asymmetric Pairs of Graphs;SIAM Journal on Discrete Mathematics;2024-01-04

5. Probabilistic hypergraph containers;Israel Journal of Mathematics;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3