Abstract
In this note we shall study random labelled graphs. Denote bythe set of all graphs with n given labelled vertices and M(n) edges. As usual, we turn (M(n)) into a probability space by giving all graphs the same probability. The question we address ourselves to is the following. Given a graph H and a constant p, 0 < p < 1, for what functions M(n) is it true that the probability PM(n)(H ⊂ G) that a graph G∈ (M(n)) contains H tends to p as n∞→? This question was posed by Erdös and Rényi (3), (4), who also proved several beautiful and surprising theorems. In order to state the main general result of Erdös and Rényi in this direction, and for our use later, we introduce some definitions.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. On random graphs, I;Erdös;Publ. Math. Debrecen,1959
2. On the evolution of random graphs;Erdös;Publ. Math. Inst. Hungar. Acad. Sci.,1960
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献