Solution to a non-Archimedean Monge-Ampère equation

Author:

Boucksom Sébastien,Favre Charles,Jonsson Mattias

Abstract

Let X X be a smooth projective Berkovich space over a complete discrete valuation field K K of residue characteristic zero, and assume that X X is defined over a function field admitting K K as a completion. Let further μ \mu be a positive measure on X X and L L be an ample line bundle such that the mass of μ \mu is equal to the degree of L L . We prove the existence of a continuous semipositive metric whose associated measure is equal to μ \mu in the sense of Zhang and Chambert-Loir. We do this under a technical assumption on the support of μ \mu , which is, for instance, fulfilled if the support is a finite set of divisorial points. Our method draws on analogs of the variational approach developed to solve complex Monge-Ampère equations on compact Kähler manifolds by Berman, Guedj, Zeriahi, and the first named author, and of Kołodziej’s C 0 C^0 -estimates. It relies in a crucial way on the compactness properties of singular semipositive metrics, as defined and studied in a companion article.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference53 articles.

1. On the theory of mixed volumes of convex bodies III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. (Russian);Alexandrov A. D.;Mat. Sbornik,1938

2. Mathematical Surveys and Monographs;Baker, Matthew,2010

3. Mathematical Surveys and Monographs;Berkovich, Vladimir G.,1990

4. Smooth 𝑝-adic analytic spaces are locally contractible;Berkovich, Vladimir G.;Invent. Math.,1999

5. Growth of balls of holomorphic sections and energy at equilibrium;Berman, Robert;Invent. Math.,2010

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ding stability and Kähler–Einstein metrics on manifolds with big anticanonical class;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-08-21

2. Non-Archimedean Green’s functions and Zariski decompositions;Comptes Rendus. Mathématique;2024-06-06

3. Tropical and non-Archimedean Monge–Ampère equations for a class of Calabi–Yau hypersurfaces;Advances in Mathematics;2024-03

4. On divisorial stability of finite covers;Forum of Mathematics, Sigma;2024

5. Metric SYZ conjecture and non-Archimedean geometry;Duke Mathematical Journal;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3