Ding stability and Kähler–Einstein metrics on manifolds with big anticanonical class

Author:

Dervan Ruadhaí1,Reboulet Rémi2

Affiliation:

1. School of Mathematics and Statistics , University of Glasgow , University Place , Glasgow G12 8QQ , United Kingdom

2. DPMMS , Centre for Mathematical Sciences , 2152 University of Cambridge , Wilberforce Road , Cambridge CB3 0WB , United Kingdom

Abstract

Abstract We introduce a notion of uniform Ding stability for a projective manifold with big anticanonical class, and prove that the existence of a unique Kähler–Einstein metric on such a manifold implies uniform Ding stability. The main new techniques are to develop a general theory of Deligne functionals – and corresponding slope formulas – for singular metrics, and to prove a slope formula for the Ding functional in the big setting. This extends work of Berman in the Fano situation, when the anticanonical class is actually ample, and proves one direction of the analogue of the Yau–Tian–Donaldson conjecture in this setting. We also speculate about the relevance of uniform Ding stability and K-stability to moduli in the big setting.

Funder

Royal Society

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3