Kähler hyperbolic manifolds and Chern number inequalities

Author:

Li Ping

Abstract

We show in this article that Kähler hyperbolic manifolds satisfy a family of optimal Chern number inequalities and that the equality cases can be attained by some compact ball quotients. These present restrictions to complex structures on negatively curved compact Kähler manifolds, thus providing evidence for the rigidity conjecture of S.-T. Yau. The main ingredients in our proof are Gromov’s results on the L 2 L^2 -Hodge numbers, the 1 -1 -phenomenon of the χ y \chi _y -genus and Hirzebruch’s proportionality principle. Similar methods can be applied to obtain parallel results on Kähler nonelliptic manifolds. In addition to these, we term a condition called “Kähler exactness”, which includes Kähler hyperbolic and nonelliptic manifolds and has been used by B.-L. Chen and X. Yang in their work, and we show that the canonical bundle of a Kähler exact manifold of the general type is ample. Some of its consequences and remarks are discussed as well.

Funder

National Natural Science Foundation of China

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Elliptic operators, discrete groups and von Neumann algebras;Atiyah, M. F.,1976

2. ESI Lectures in Mathematics and Physics;Ballmann, Werner,2006

3. Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature;Cao, Jianguo;Math. Ann.,2001

4. On curvature and characteristic classes of a Riemann manifold;Chern, Shiing-shen;Abh. Math. Sem. Univ. Hamburg,1955

5. Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds;Chen, Bing-Long;Math. Ann.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-13

2. Characteristic numbers, Jiang subgroup and non-positive curvature;Mathematische Zeitschrift;2022-11-28

3. On the Hodge and Betti Numbers of Hyper-Kähler Manifolds;Milan Journal of Mathematics;2022-10-29

4. Hodge Theory of Holomorphic Vector Bundle on Compact Kähler Hyperbolic Manifold;International Mathematics Research Notices;2021-08-24

5. Chern Class Inequalities on Polarized Manifolds and Nef Vector Bundles;International Mathematics Research Notices;2020-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3