Hodge Theory of Holomorphic Vector Bundle on Compact Kähler Hyperbolic Manifold

Author:

Huang Teng12

Affiliation:

1. School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China

2. CAS Key Laboratory of Wu Wen-Tsun Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China

Abstract

Abstract Let $E$ be a holomorphic vector bundle over a compact Kähler manifold $(X,\omega )$ with negative sectional curvature $sec\leq -K<0$ and $D_{E}$ be the Chern connection on $E$. In this article, we show that if $C:=|[\Lambda ,i\Theta (E)]|\leq c_{n}K$, then $(X,E)$ satisfy a family of Chern number inequalities. The main idea in our proof is to study the $L^{2}$  $\bar {\partial }_{\tilde {E}}$-harmonic forms on lifting bundle $\tilde {E}$ over the universal covering space $\tilde {X}$. We also observe that there is a close relationship between the eigenvalue of the Laplace–Beltrami operator $\Delta _{\bar {\partial }_{\tilde {E}}}$ and the Euler characteristic of $X$. Precisely, if there is a line bundle $L$ on $X$ such that $\chi ^{p}(X,L^{\otimes m})$ is not constant for some integers $p\in [0,n]$, then the Euler characteristic of $X$ satisfies $(-1)^{n}\chi (X)\geq (n+1)+\lfloor \frac {c_{n}K}{2nC} \rfloor $.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference35 articles.

1. L$^2$ harmonic forms and a conjecture of Dodziuk–Singer;Anderson;Am. Math. Soc. Bull.,1985

2. L$^2$ Harmonic Forms on Complete Riemannian Manifolds;Anderson,1988

3. Elliptic operators, discrete group and Von Neumann algebras;Atiyah;Astérisque,1976

4. Von Neumann dimension, Hodge index theorem and geometric applications;Bei;Eur. J. Math.,2019

5. Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature;Cao;Math. Ann.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vanishing theorem on parabolic Kähler manifolds;Geometriae Dedicata;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3