Error analysis for deep neural network approximations of parametric hyperbolic conservation laws

Author:

De Ryck T.,Mishra S.

Abstract

We derive rigorous bounds on the error resulting from the approximation of the solution of parametric hyperbolic scalar conservation laws with ReLU neural networks. We show that the approximation error can be made as small as desired with ReLU neural networks that overcome the curse of dimensionality. In addition, we provide an explicit upper bound on the generalization error in terms of the training error, number of training samples and the neural network size. The theoretical results are illustrated by numerical experiments.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference38 articles.

1. Model reduction using 𝐿¹-norm minimization as an application to nonlinear hyperbolic problems;Abgrall, R.;Internat. J. Numer. Methods Fluids,2018

2. Full error analysis for the training of deep neural networks;Beck, Christian;Infin. Dimens. Anal. Quantum Probab. Relat. Top.,2022

3. P. Beneventano, P. Cheridito, A. Jentzen, and P. von Wurstemberger, High-dimensional approximation spaces of artificial neural networks and applications to partial differential equations, Preprint, arXiv:2012.04326, 2020.

4. Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations;Berner, Julius;SIAM J. Math. Data Sci.,2020

5. H. Bijl, D. Lucor, S. Mishra, and S. Ch, Uncertainty Quantification in Computational Fluid Dynamics, Springer, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3