Full error analysis for the training of deep neural networks

Author:

Beck Christian12,Jentzen Arnulf123,Kuckuck Benno24

Affiliation:

1. Seminar for Applied Mathematics, Department of Mathematics, ETH Zürich, Zürich, Switzerland

2. Applied Mathematics: Institute for Analysis and Numerics, Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany

3. School of Data Science and Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China

4. Institute of Mathematics, University of Düsseldorf, Düsseldorf, Germany

Abstract

Deep learning algorithms have been applied very successfully in recent years to a range of problems out of reach for classical solution paradigms. Nevertheless, there is no completely rigorous mathematical error and convergence analysis which explains the success of deep learning algorithms. The error of a deep learning algorithm can in many situations be decomposed into three parts, the approximation error, the generalization error, and the optimization error. In this work we estimate for a certain deep learning algorithm each of these three errors and combine these three error estimates to obtain an overall error analysis for the deep learning algorithm under consideration. In particular, we thereby establish convergence with a suitable convergence speed for the overall error of the deep learning algorithm under consideration. Our convergence speed analysis is far from optimal and the convergence speed that we establish is rather slow, increases exponentially in the dimensions, and, in particular, suffers from the curse of dimensionality. The main contribution of this work is, instead, to provide a full error analysis (i) which covers each of the three different sources of errors usually emerging in deep learning algorithms and (ii) which merges these three sources of errors into one overall error estimate for the considered deep learning algorithm.

Funder

Germany's Excellence Strategy

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Reference78 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3