Integral points and orbits of endomorphisms on the projective plane

Author:

Levin Aaron,Yasufuku Yu

Abstract

We analyze when integral points on the complement of a finite union of curves in P 2 \mathbb {P}^2 are potentially dense. When the logarithmic Kodaira dimension κ ¯ \bar {\kappa } is -\infty , we completely characterize the potential density of integral points in terms of the number of irreducible components at infinity and the number of multiple members in a pencil naturally associated to the surface. When κ ¯ = 0 \bar {\kappa } = 0 , we prove that integral points are always potentially dense. The bulk of our analysis concerns the subtle case of κ ¯ = 1 \bar {\kappa }=1 . We determine the potential density of integral points in a number of cases by incorporating the structure theory of affine surfaces and developing an arithmetic framework for studying integral points on surfaces fibered over curves.

We also prove, assuming Lang–Vojta’s conjecture, that an orbit under an endomorphism ϕ \phi of P 2 \mathbb {P}^2 can contain a Zariski-dense set of integral points only if there is a nontrivial completely invariant proper Zariski-closed subset of P 2 \mathbb {P}^2 under ϕ \phi . This may be viewed as a generalization of a result of Silverman on  P 1 \mathbb {P}^1 .

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. Characterizing algebraic curves with infinitely many integral points;Alvanos, Paraskevas;Int. J. Number Theory,2009

2. Remarks on endomorphisms and rational points;Amerik, E.;Compos. Math.,2011

3. Exceptional points of an endomorphism of the projective plane;Amerik, E.;Math. Z.,2005

4. Étale endomorphisms of smooth affine surfaces;Aoki, Hisayo;J. Algebra,2000

5. Ternary form equations;Beukers, F.;J. Number Theory,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Hilbert Irreducibility Theorem for Integral Points on del Pezzo Surfaces;International Mathematics Research Notices;2023-09-18

2. Growth of Local Height Functions Along Orbits of Self-Morphisms on Projective Varieties;International Mathematics Research Notices;2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3