A Hilbert Irreducibility Theorem for Integral Points on del Pezzo Surfaces

Author:

Coccia Simone1

Affiliation:

1. Department of Mathematics , University of British Columbia, Vancouver, BC V6T 1Z2, Canada

Abstract

AbstractWe prove that the integral points are potentially Zariski dense in the complement of a reduced effective singular anticanonical divisor in a smooth del Pezzo surface, with the exception of ${{\mathbb {P}}}^{2}$ minus three concurrent lines (for which potential density does not hold). This answers positively a question raised by Hassett and Tschinkel and, combined with previous results, completes the proof of the potential density of integral points for complements of anticanonical divisors in smooth del Pezzo surfaces. We then classify the complements that are simply connected and for these we prove that the set of integral points is potentially not thin, as predicted by a conjecture of Corvaja and Zannier.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference51 articles.

1. Characterizing algebraic curves with infinitely many integral points;Alvanos;Int. J. Number Theory,2009

2. Hyperbolicity of varieties of log general type;Ascher,2020

3. Ramified covers of abelian varieties over torsion fields;Bary-Soroker,2022

4. On varieties of Hilbert type;Bary-Soroker;Univ. Grenoble Ann.Inst. Fourier. Univ. Grenoble I,2014

5. Ternary form equations;Beukers;J. Number Theory,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On integral points of some Fano threefolds and their Hilbert schemes of lines and conics;Rendiconti del Circolo Matematico di Palermo Series 2;2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3