The Medusa algorithm for polynomial matings

Author:

Boyd Suzanne,Henriksen Christian

Abstract

The Medusa algorithm takes as input two postcritically finite quadratic polynomials and outputs the quadratic rational map which is the mating of the two polynomials (if it exists). Specifically, the output is a sequence of approximations for the parameters of the rational map, as well as an image of its Julia set. Whether these approximations converge is answered using Thurston’s topological characterization of rational maps.

This algorithm was designed by John Hamal Hubbard, and implemented in 1998 by Christian Henriksen and REU students David Farris and Kuon Ju Liu.

In this paper we describe the algorithm and its implementation, discuss some output from the program (including many pictures) and related questions. Specifically, we include images and a discussion for some shared matings, Lattès examples, and tuning sequences of matings.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference19 articles.

1. [BEK] Xavier Buff, Adam Epstein, and Sarah Koch. Twisted matings and equipotential gluings. submitted.

2. [Che12] Arnaud Cheritat. Tan Lei and Shishikura’s example of non-mateable degree 3 polynomials without a Levy cycle. preprint, arXiv:1202.4188v1, 2012.

3. Itération des polynômes quadratiques complexes;Douady, Adrien;C. R. Acad. Sci. Paris S\'{e}r. I Math.,1982

4. A proof of Thurston’s topological characterization of rational functions;Douady, Adrien;Acta Math.,1993

5. Systèmes dynamiques holomorphes;Douady, Adrien,1983

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unmating of expanding Thurston maps with Julia set ²;Contemporary Mathematics;2024

2. The W. Thurston algorithm applied to real polynomial maps;Conformal Geometry and Dynamics of the American Mathematical Society;2021-10-29

3. Thurston's algorithm and rational maps from quadratic polynomial matings;Discrete & Continuous Dynamical Systems - S;2019

4. Algorithmic Construction of Hurwitz Maps;Experimental Mathematics;2015-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3