Unmating of expanding Thurston maps with Julia set 𝕊²

Author:

Wilkerson Mary

Abstract

Every expanding Thurston map f f without periodic critical points is known to have an iterate f n f^n which is the topological mating of two polynomials. This has been examined by Kameyama and Meyer; the latter has offered an explicit construction for finding two polynomials in the unmating of the iterate. Initializing Meyer’s algorithm depends on an invariant Jordan curve through the postcritical set of f f –but we propose adjustments to this unmating algorithm for Kameyama’s more general case where there exists a curve which is fully f f -invariant up to homotopy and not necessarily simple. When f f is a critically pre-periodic expanding Thurston map, extending the algorithm to accommodate non-Jordan curves in this manner may allow us to unmate without iterates.

Publisher

American Mathematical Society

Reference16 articles.

1. Mathematical Surveys and Monographs;Bonk, Mario,2017

2. Constructing subdivision rules from rational maps;Cannon, J. W.;Conform. Geom. Dyn.,2007

3. Davood Ahmadi Dastjerdi, Dynamics of certain rational maps of degree two., Ph.D. thesis, University of Liverpool, 1991.

4. The Medusa algorithm for polynomial matings;Boyd, Suzanne Hruska;Conform. Geom. Dyn.,2012

5. Wolf Jung, Quadratic matings and anti-matings, preprint (2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3