Theta functions on varieties with effective anti-canonical class

Author:

Gross Mark,Hacking Paul,Siebert Bernd

Abstract

We show that a large class of maximally degenerating families of n n -dimensional polarized varieties comes with a canonical basis of sections of powers of the ample line bundle. The families considered are obtained by smoothing a reducible union of toric varieties governed by a wall structure on a real n n -(pseudo-)manifold. Wall structures have previously been constructed inductively for cases with locally rigid singularities [Gross and Siebert, From real affine geometry to complex geometry (2011)] and by Gromov-Witten theory for mirrors of log Calabi-Yau surfaces and K 3 K3 surfaces [Gross, Pandharipande and Siebert, The tropical vertex; Gross, Hacking and Keel, Mirror symmetry for log Calabi-Yau surfaces (2015); Gross, Hacking, Keel, and Siebert, Theta functions and K 3 K3 surfaces (In preparation)]. For trivial wall structures on the n n -torus we retrieve the classical theta functions.

We anticipate that wall structures can be constructed quite generally from maximal degenerations. The construction given here then provides the homogeneous coordinate ring of the mirror degeneration along with a canonical basis. The appearance of a canonical basis of sections for certain degenerations points towards a good compactification of moduli of certain polarized varieties via stable pairs, generalizing the picture for K3 surfaces [Gross, Hacking, Keel, and Siebert, Theta functions and K 3 K3 surfaces (In preparation)]. Another possible application apart from mirror symmetry may be to geometric quantization of varieties with effective anti-canonical class.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference47 articles.

1. [ACGS] D. Abramovich, Q. Chen, M. Gross, B. Siebert: Punctured logarithmic maps, preprint arXiv:2009.07720.

2. Complete moduli in the presence of semiabelian group action;Alexeev, Valery;Ann. of Math. (2),2002

3. Hitchin’s connection, Toeplitz operators, and symmetry invariant deformation quantization;Andersen, Jørgen Ellegaard;Quantum Topol.,2012

4. Geometric quantization of Chern-Simons gauge theory;Axelrod, Scott;J. Differential Geom.,1991

5. Quantization of abelian varieties: distributional sections and the transition from Kähler to real polarizations;Baier, Thomas;J. Funct. Anal.,2010

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stable maps to Looijenga pairs;Geometry & Topology;2024-02-27

2. A Tropical View on Landau–Ginzburg Models;Acta Mathematica Sinica, English Series;2024-01

3. Fock–Goncharov dual cluster varieties and Gross–Siebert mirrors;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-07-22

4. Reflexive polygons and rational elliptic surfaces;Rendiconti del Circolo Matematico di Palermo Series 2;2023-07-12

5. The higher-dimensional tropical vertex;Geometry & Topology;2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3