Abstract
AbstractIn this note we study in detail the geometry of eight rational elliptic surfaces naturally associated to the sixteen reflexive polygons. The elliptic fibrations supported by these surfaces correspond under mirror symmetry to the eight families of smooth del Pezzo surfaces with very ample anticanonical bundle.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Akhtar, M., Coates, T., Corti, A., Heuberger, L., Kasprzyk, A., Oneto, A., Petracci, A., Prince, T., Tveiten, K.: Mirror symmetry and the classification of orbifold del Pezzo surfaces. Proc. Am. Math. Soc. 144(2), 513–527 (2016)
2. Akhtar, M., Coates, T., Galkin, S., Kasprzyk, A.M.: Minkowski polynomials and mutations. SIGMA Symmetry Integr. Geom. Methods Appl. 8, 094 (2012)
3. Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT 1, 51–91 (2007)
4. Auroux, D., Katzarkov, L., Orlov, D.: Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves. Invent. Math. 166(3), 537–582 (2006)
5. Auroux, D., Katzarkov, L., Orlov, D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. Ann. of Math. 2(167), 867–943 (2008)