F-regular and F-pure rings vs. log terminal and log canonical singularities

Author:

Hara Nobuo,Watanabe Kei-ichi

Abstract

We investigate the relationship of F-regular (resp. F-pure) rings and log terminal (resp. log canonical) singularities. Also, we extend the notions of F-regularity and F-purity to “F-singularities of pairs." The notions of F-regular and F-pure rings in characteristic p > 0 p > 0 are characterized by a splitting of the Frobenius map, and define some classes of rings having “mild" singularities. On the other hand, there are notions of log terminal and log canonical singularities defined via resolution of singularities in characteristic zero. These are defined also for pairs of a normal variety and a Q \mathbb Q -divisor on it, and play important roles in birational algebraic geometry. As an analog of these singularities of pairs, we introduce the concept of “F-singularities of pairs," namely strong F-regularity, divisorial F-regularity and F-purity for a pair ( A , Δ ) (A,\Delta ) of a normal ring A A of characteristic p > 0 p > 0 and an effective Q \mathbb Q -divisor Δ \Delta on Spec A \operatorname {Spec} A . The main theorem of this paper asserts that, if K A + Δ K_{A}+\Delta is Q \mathbb Q -Cartier, then the above three variants of F-singularities of pairs imply KLT, PLT and LC properties, respectively. We also prove some results for F-singularities of pairs which are analogous to singularities of pairs in characteristic zero.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steenbrink‐type vanishing for surfaces in positive characteristic;Bulletin of the London Mathematical Society;2024-09-12

2. On localization of tight closure in line-S4 quartics;Journal of Pure and Applied Algebra;2024-09

3. Lifting globally -split surfaces to characteristic zero;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-08-14

4. Blowup algebras of determinantal ideals in prime characteristic;Journal of the London Mathematical Society;2024-07-23

5. Reductive quotients of klt singularities;Inventiones mathematicae;2024-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3