Arithmetic positivity on toric varieties

Author:

Burgos Gil José,Moriwaki Atsushi,Philippon Patrice,Sombra Martín

Abstract

We continue the study of the arithmetic geometry of toric varieties started by J. Burgos Gil, P. Philippon, and M. Sombra in 2011. In this text, we study the positivity properties of metrized R \mathbb {R} -divisors in the toric setting. For a toric metrized R \mathbb {R} -divisor, we give formulae for its arithmetic volume and its χ \chi -arithmetic volume, and we characterize when it is arithmetically ample, nef, big or pseudo-effective, in terms of combinatorial data. As an application, we prove a higher-dimensional analogue of Dirichlet’s unit theorem for toric varieties, we give a characterization for the existence of a Zariski decomposition of a toric metrized R \mathbb {R} -divisor, and we prove a toric arithmetic Fujita approximation theorem.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference33 articles.

1. Okounkov bodies of filtered linear series;Boucksom, Sébastien;Compos. Math.,2011

2. Solution to a non-Archimedean Monge-Ampère equation;Boucksom, Sébastien;J. Amer. Math. Soc.,2015

3. Limit distribution of small points on algebraic tori;Bilu, Yuri;Duke Math. J.,1997

4. Arithmetic geometry of toric varieties. Metrics, measures and heights;Burgos Gil, José Ignacio;Ast\'{e}risque,2014

5. Equidistribution of small points, rational dynamics, and potential theory;Baker, Matthew H.;Ann. Inst. Fourier (Grenoble),2006

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Progress in Mathematics;2024

2. Arithmetic Okounkov bodies and positivity of adelic Cartier divisors;Journal of Algebraic Geometry;2023-10-17

3. Dynamical Tropicalisation;The Journal of Geometric Analysis;2023-01-09

4. The theta invariants and the volume function on arithmetic varieties;Transactions of the American Mathematical Society;2023-01-04

5. Metrised ample line bundles in non-Archimedean geometry;Annales de l'Institut Fourier;2022-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3