Atomic semigroup rings and the ascending chain condition on principal ideals

Author:

Gotti Felix,Li Bangzheng

Abstract

An integral domain is called atomic if every nonzero nonunit element factors into irreducibles. On the other hand, an integral domain is said to satisfy the ascending chain condition on principal ideals (ACCP) if every ascending chain of principal ideals stabilizes. It was asserted by P. Cohn back in the sixties that every atomic domain satisfies the ACCP, but such an assertion was refuted by A. Grams in the seventies with a neat counterexample. Still, atomic domains without the ACCP are notoriously elusive, and just a few classes have been found since Grams’ first construction. In the first part of this paper, we generalize Grams’ construction to provide new classes of atomic domains without the ACCP. In the second part of this paper, we construct a new class of atomic semigroup rings without the ACCP.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. An example of an atomic pullback without the ACCP;Boynton, Jason G.;J. Pure Appl. Algebra,2019

2. Factorization invariants of Puiseux monoids generated by geometric sequences;Chapman, Scott T.;Comm. Algebra,2020

3. When is a Puiseux monoid atomic?;Chapman, Scott T.;Amer. Math. Monthly,2021

4. Bezout rings and their subrings;Cohn, P. M.;Proc. Cambridge Philos. Soc.,1968

5. On the atomicity of monoid algebras;Coykendall, Jim;J. Algebra,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atomicity of positive monoids;Quaestiones Mathematicae;2024-06-03

2. ON THE SET OF BETTI ELEMENTS OF A PUISEUX MONOID;Bulletin of the Australian Mathematical Society;2024-05-20

3. A WEAKER NOTION OF THE FINITE FACTORIZATION PROPERTY;COMMUN KOREAN MATH S;2024

4. Factorization in group algebras;Journal of Algebra and Its Applications;2023-12-08

5. On the atomic structure of torsion-free monoids;Semigroup Forum;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3