Author:
Gotti Felix,Vulakh Joseph
Abstract
AbstractLet M be a cancellative and commutative (additive) monoid. The monoid M is atomic if every non-invertible element can be written as a sum of irreducible elements, which are also called atoms. Also, M satisfies the ascending chain condition on principal ideals (ACCP) if every increasing sequence of principal ideals (under inclusion) becomes constant from one point on. In the first part of this paper, we characterize torsion-free monoids that satisfy the ACCP as those torsion-free monoids whose submonoids are all atomic. A submonoid of the nonnegative cone of a totally ordered abelian group is often called a positive monoid. Every positive monoid is clearly torsion-free. In the second part of this paper, we study the atomic structure of certain classes of positive monoids.
Funder
Massachusetts Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献