Hypergeometric sheaves for classical groups via geometric Langlands

Author:

Kamgarpour Masoud,Xu Daxin,Yi Lingfei

Abstract

In a previous paper, the first and third authors gave an explicit realization of the geometric Langlands correspondence for hypergeometric sheaves, considered as G L n \mathrm {GL}_n -local systems. Certain hypergeometric local systems admit a symplectic or orthogonal structure, which can be viewed as G ˇ \check {G} -local systems, for a classical group G ˇ \check {G} . This article aims to realize the geometric Langlands correspondence for these G ˇ \check {G} -local systems.

We study this problem from two aspects. In the first approach, we define the hypergeometric automorphic data for a classical group G G in the framework of Yun, one of whose local components is a new class of euphotic representations in the sense of Jakob–Yun. We prove the rigidity of hypergeometric automorphic data under natural assumptions, which allows us to define G ˇ \check {G} -local systems E G ˇ \mathcal {E}_{\check {G}} on G m \mathbb {G}_m as Hecke eigenvalues (in both \ell -adic and de Rham settings). In the second approach (which works only in the de Rham setting), we quantize a ramified Hitchin system, following Beilinson–Drinfeld and Zhu, and identify E G ˇ \mathcal {E}_{\check {G}} with certain G ˇ \check {G} -opers on G m \mathbb {G}_m . Finally, we compare these G ˇ \check {G} -opers with hypergeometric local systems.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. On the image of the parabolic Hitchin map;Baraglia, David;Q. J. Math.,2018

2. Complete integrability of the parahoric Hitchin system;Baraglia, David;Int. Math. Res. Not. IMRN,2019

3. Preservation of depth in the local geometric Langlands correspondence;Chen, Tsao-Hsien;Trans. Amer. Math. Soc.,2017

4. Applications de la formule des traces aux sommes trigonométriques;Deligne, P.,1977

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the physical rigidity of Frenkel-Gross connection;Selecta Mathematica;2024-04-03

2. Airy sheaves for reductive groups;Proceedings of the London Mathematical Society;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3