Complete Integrability of the Parahoric Hitchin System

Author:

Baraglia David1,Kamgarpour Masoud2,Varma Rohith3

Affiliation:

1. Department of Mathematics, University of Adelaide

2. School of Mathematics and Physics, The University of Queensland

3. Institute of Mathematical Sciences, Chennai

Abstract

Abstract Let $\mathcal {G}$ be a parahoric group scheme over a complex projective curve X of genus greater than one. Let $\mathrm {Bun}_{\mathcal {G}}$ denote the moduli stack of $\mathcal {G}$-torsors on X. We prove several results concerning the Hitchin map on $T^{\ast }\!\mathrm {Bun}_{\mathcal {G}}$. We first show that the parahoric analogue of the global nilpotent cone is isotropic and use this to prove that $\mathrm {Bun}_{\mathcal {G}}$ is “very good” in the sense of Beilinson–Drinfeld. We then prove that the parahoric Hitchin map is a Poisson map whose generic fibres are abelian varieties. Together, these results imply that the parahoric Hitchin map is a completely integrable system.

Funder

Australian Research Council Discovery Early Career Researcher

Tata Institute of Fundamental Research

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. “Moduli of parahoric $\mathcal {G}$-torsors on a compact riemann surface.”;Balaji;J. Algebraic Geom,2015

2. “On the image of the parabolic hitchin map”,;Baraglia,2017

3. “Quantization of hitchin’s integrable system and hecke eigensheaves.”;Beilinson,1997

4. “Riemann-Hilbert for tame complex parahoric connections.”;Boalch;Transform. Groups,2011

5. “Symplectic geometry on moduli spaces of stable pairs.”;Bottacin;Ann. Sci. École Norm. Sup. (4),1995

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometrization of the TUY/WZW/KZ connection;Letters in Mathematical Physics;2024-06-21

2. A Hitchin connection on nonabelian theta functions for parabolic -bundles;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-09-14

3. On parahoric Hitchin systems over curves;International Journal of Mathematics;2023-09-12

4. Logahoric Higgs torsors for a complex reductive group;Mathematische Annalen;2023-03-15

5. Hypergeometric sheaves for classical groups via geometric Langlands;Transactions of the American Mathematical Society;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3